Знакопеременный ряд. Знакопеременные ряды Знакопеременные ряды сходимость и сумма

Ряд называется знакопеременным , если среди его членов есть как положительные, так и отрицательные члены.

Составим ряд из модулей членов этого ряда:

Получился положительный ряд.

Достаточный признак сходимости знакопеременного ряда: если сходится ряд, образованный из модулей членов данного знакопеременного ряда, то сходится и данный ряд.

В этом случае знакопеременный ряд называется абсолютно сходящимся .

Если знакопеременный ряд сходится, а ряд, составленный из модулей его членов, расходится, то знакопеременный ряд называется условно сходящимся .

Пример .Исследовать ряд на сходимость.

Решение . Данный ряд знакопеременный, т.к. sinn может быть как положительным, так и отрицательным при различных n .

Составим ряд из модулей его членов:

Этот ряд положительный, поэтому его можно исследовать с помощью признака сравнения. Так как ≤ , а ряд сходится по признаку Даламбера (см. п. 4.2.3.3. ). Значит, ряд с меньшими членами также сходится, а данный ряд сходится абсолютно.

Все привыкли думать, что сумма не зависит от порядка слагаемых. И это действительно так, когда речь идёт о конечном числе слагаемых. С бесконечными суммами, т.е. с рядами, нужно быть осторожнее. Оказывается, сумма ряда может меняться при изменении порядка его членов, еслиряд сходится условно . Покажем это на примере знакочередующегося гармонического ряда.

Пример . Известна сумма такого ряда:

В данном ряде переставим местами слагаемые, воспользовавшись тем, что их бесконечно много:

Получилось, что число равно его половине, т.е. абсурд. Так произошло потому, что исходный ряд был условно сходящимся (действительно, ряд, составленный из модулей его членов, является гармоническим и расходится), а для такого ряда сумма может зависеть от порядка слагаемых. И, безусловно, для конечной суммы подобная перестановка была бы невозможна, потому что мы брали в скобках одно положительное слагаемое и два отрицательных, и тогда отрицательные члены закончились бы быстрее.

Кстати, при другой какой-то перестановке можно было получить и иной результат. Например, если в скобках поставить два положительных слагаемых и одно следующее отрицательное, то сумма будет такой:

Для условно сходящихся рядов справедлива теорема Римана : посредством надлежащего изменения порядка членов не абсолютно сходящегося ряда можно получить ряд, имеющий наперёд заданную сумму, или даже расходящийся ряд.

4.3.1. Знакочередующиеся ряды

Рассмотрим ряд

Где все > 0. Такой ряд называется знакочередующимся , и он является частным случаем знакопеременного ряда.

Достаточный признак сходимости знакочередующегося ряда (признак Лейбница ): если члены знакочередующегося ряда монотонно убывают по абсолютной величине и общий член ряда стремится к нулю, то ряд сходится, а его сумма не превосходит первого члена ряда.


Следствие . Остаток ряда по абсолютной величине меньше абсолютной величины первого члена остатка. Это свойство используется в приближённых вычислениях функций, интегралов и т.д.

Доказательство. Запишем, к примеру, частичную сумму ряда, состоящую из чётного числа слагаемых:

Так как по условию члены ряда убывают, то все скобки здесь положительны. И получается, что, с одной стороны, возрастает с ростом k , а с другой, не превышает первого члена а 1 . По теореме Больцано-Вейерштрасса имеет предел.

При исследовании сходимости знакопеременного ряда следует сначала использовать признак Лейбница, а затем проверить, сходится ли ряд, составленный из модулей членов этого ряда. После этого сделать вывод, сходится ряд абсолютно или условно.

Пример. Исследовать сходимость ряда .

Решение. Этот ряд знакочередующийся. Члены ряда обладают следующими свойствами:

1) модули членов ряда монотонно убывают: > > > … ;тоже расходится.

Получилось, что исходный ряд сходится, а ряд из модулей расходится. Следовательно, исходный ряд является условно сходящимся.

Ряд называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные.

Рассмотренные в предыдущем параграфе знакочередующиеся ряды являются, очевидно, частным случаем знакопеременных рядов.

Мы рассмотрим здесь некоторые свойства знакопеременных рядов. При этом в отличие от соглашения, принятого в предыдущем параграфе, мы будем теперь полагать, что числа могут быть как положительными, так и отрицательными.

Прежде всего, дадим один важный достаточный признак сходимости зракопеременного ряда.

Теорема 1. Если знакопеременный ряд

таков, что ряд, составленный из абсолютных величин его членов,

сходится, то и данный знакопеременный ряд также сходится.

Доказательство. Пусть - суммы первых членов рядов (1) и (2).

По условию, имеет предел и - положительные возрастающие величины, меньшие а. Следовательно, они имеют пределы Из соотношения следует, что и имеет предел и этот предел равен , т. е. знакопеременный ряд (1) сходится.

Доказанная теорема дает возможность судить о сходимости некоторых знакопеременных рядов. Исследование вопроса о сходимости знакопеременного ряда сводится в этом случае к исследованию ряда с положительными членами.

Рассмотрим два примера.

Пример 1. Исследовать сходимость ряда

где а - любое число.

Решение. Наряду с данным рядом, рассмотрим ряды

Ряд (5) сходится (см. § 6). Члены ряда (4) не больше соответственных членов ряда (5); следовательно, ряд (4) тоже сходится. Но тогда в силу доказанной теоремы данный знакопеременный ряд (3) тоже сходится.

Пример 2. Исследовать сходимость ряда

Решение. Наряду с данным рядом, рассмотрим ряд

Этот ряд сходится, так как он является убывающей геометрической прогрессией со знаменателем 1/3. Но тогда сходится и заданный ряд (6), так как абсолютные величины его членов меньше соответствующих членов ряда (7).

Заметим, что признак сходимости, доказанной выше, является только достаточным признаком сходимости знакочередующегося ряда, но не необходимым: существуют такие знакопеременные ряды, которые сами сходятся, но ряды, составленные из абсолютных величин их членов, расходятся. В связи с этим полезно ввести понятия об абсолютной и условной сходимости. знакопеременного ряда и на основе этих понятий классифицировать знакопеременные ряды.

Определение. Знакопеременный ряд

называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов:

Если же знакопеременный ряд (1) сходится, а ряд (2), составленный из абсолютных величин его членов, расходится, то данный знакопеременный ряд (1) называется условно или неабсолютно сходящимся рядом.

Пример 3. Знакопеременный ряд является условно сходящимся, так как ряд, составленный из абсолютных величин его членов, есть гармонический ряд который расходится. Сам же ряд сходится, что легко проверить с помощью признака Лейбница.

Пример 4. Знакопеременный ряд есть ряд абсолютно сходящийся, так как ряд, составленный из абсолютных величин его членов сходится, как это было установлено в § 4.

С помощью понятия абсолютной сходимости теорему 1 часто формулируют следующим образом: всякий абсолютно сходящийся ряд есть ряд сходящийся.

В заключение отметим (без доказательства) следующие свойства абсолютно сходящихся и условно сходящихся рядов.

Теорема 2. Если ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.

Это свойство не сохраняется для условно сходящихся рядов. Теорема 3. Если ряд сходится условно, то, какое бы мы ни задали число А, можно так переставить члены этого ряда, чтобы его сумма оказалась в точности равной А. Более того, - можно так переставить члены условно сходящегося ряда, чтобы ряд, полученный после перестановки, оказался расходящимся.

Доказательство эти теорем выходит за рамки данного курса. Его можно найти в более подробных учебниках (см., например, Фнхтенгольц Г. М. Курс дифференциального и интегрального исчисления, т. II. - М.: Физматгиз, 1962, с. 319-320).

Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным.

Абсолютная и условная сходимость

Ряд называется абсолютно сходящимся, если ряд также сходится.

Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно.

Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Исследовать на сходимость ряд .

Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем

поскольку . Следовательно, данный ряд сходится.

38. Знакочередующиеся ряды. Признак Лейбница.

Частным случаем знакопеременного ряда является знакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки.

Признак Лейбница

Для знакочередующихся рядом действует достаточный признак сходимости Лейбница.

Пусть {an} является числовой последовательностью, такой, что

1. an+1 < an для всех n;

Тогда знакочередующиеся ряды исходятся.

39. Функциональные ряды. Степенные ряды. Радиус сходимости. Интервал сходимости.

Понятие функционального ряда и степенного ряда

Обычный числовой ряд, вспоминаем, состоит из чисел:

Все члены ряда –это ЧИСЛА.

Функциональный же ряд состоит из ФУНКЦИЙ:

В общий член рядапомимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так:

Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

Как видите, все члены функционального ряда это функции.

Наиболее популярной разновидностью функционального ряда является степенной ряд.

Определение:

Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной.

Упрощенно степенной ряд во многих учебниках записывают так: , где– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:

Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.

Очень часто степенной ряд можно встретить в следующих «модификациях»: илигде а – константа. Например:

Строго говоря, упрощенные записи степенного ряда,илине совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:

Или такой степенной ряд:

Лишь бы показатели степеней при «иксАх» были натуральными.

Сходимость степенного ряда .

Интервал сходимости, радиус сходимости и область сходимости

Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.

Прошу любить и жаловать степенной ряд Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:

Если х=1,то

Если х=-1,то

Если х=3,то

Если х=-0,2, то

Очевидно, что, подставляя в то или иное значение «икс», мы получаем различные числовые ряды. Некоторые числовые ряды будут сходиться, а некоторые расходиться. И наша задача найти множество значений «икс», при котором степенной рядбудет сходиться. Такое множество и называется областью сходимости ряда.

Для любого степенного ряда (временно отвлекаемся от конкретного примера) возможны три случая:

1) Степенной ряд сходится абсолютно на некотором интервале . Иными словами, если мы выбираем любое значение «икс» из интервалаи подставляем его в общий член степенного ряда, то у нас получается абсолютно сходящийся числовой ряд. Такой интервал и называется интервалом сходимости степенного ряда.

Радиус сходимости, если совсем просто, это половина длины интервала сходимости:

Геометрически ситуация выглядит так:

В данном случае, интервал сходимости ряда: радиус сходимости ряда:

Определение 1

Числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $, члены которого имеют произвольные знаки (+), (?), называется знакопеременным рядом.

Рассмотренные выше знакочередующиеся ряды являются частным случаем знакопеременного ряда; понятно, что не всякий знакопеременный ряд является знакочередующимся. Например, ряд $1-\frac{1}{2} -\frac{1}{3} +\frac{1}{4} +\frac{1}{5} -\frac{1}{6} -\frac{1}{7} +\ldots - $ знакопеременный, но не являющийся знакочередующимся рядом.

Отметим, что в знакопеременном ряде членов как со знаком (+), так и со знаком (-) бесконечно много. Если это не выполняется, например, ряд содержит конечное число отрицательных членов, то их можно отбросить и рассматривать ряд, составленный только из положительных членов, и наоборот.

Определение 2

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится и его сумма равна S,а частичная сумма равна $S_n$ , то $r_{n} =S-S_{n} $ называется остатком ряда, причём $\mathop{\lim }\limits_{n\to \infty } r_{n} =\mathop{\lim }\limits_{n\to \infty } (S-S_{n})=S-S=0$, т.е. остаток сходящегося ряда стремится к 0.

Определение 3

Ряд $\sum \limits _{n=1}^{\infty }u_{n} $ называется сходящимся абсолютно, если сходится ряд, составленный из абсолютных величин его членов $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Определение 4

Если числовой ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, а ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $, составленный из абсолютных величин его членов, расходится, то исходный ряд называется условно (неабсолютно) сходящимся.

Теорема 1 (достаточный признак сходимости знакопеременных рядов)

Знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, причём абсолютно, если сходится ряд, составленный из абсолютных величин его членов$\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $.

Замечание

Теорема 1 даёт только достаточное условие сходимости знакопеременных рядов . Обратная теорема неверна, т.е. если знакопеременный ряд $\sum \limits _{n=1}^{\infty }u_{n} $ сходится, то не обязательно, что сходится ряд, составленный из модулей $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| $ (он может быть как сходящимся, так и расходящимся). Например, ряд $1-\frac{1}{2} +\frac{1}{3} -\frac{1}{4} +...=\sum \limits _{n=1}^{\infty }\frac{(-1)^{n-1} }{n} $ сходится по признаку Лейбница, а ряд, составленный из абсолютных величин его членов, $\sum \limits _{n=1}^{\infty }\, \frac{1}{n} $ (гармонический ряд) расходится.

Свойство 1

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится, то он абсолютно сходится при любой перестановке его членов, при этом сумма ряда не зависит от порядка расположения членов. Если $S"$ - сумма всех его положительных членов, а $S""$ - сумма всех абсолютных величин отрицательных членов, то сумма ряда $\sum \limits _{n=1}^{\infty }u_{n} $ равна $S=S"-S""$.

Свойство 2

Если ряд $\sum \limits _{n=1}^{\infty }u_{n} $ абсолютно сходится и $C={\rm const}$, то ряд $\sum \limits _{n=1}^{\infty }C\cdot u_{n} $ также абсолютно сходится.

Свойство 3

Если ряды $\sum \limits _{n=1}^{\infty }u_{n} $ и $\sum \limits _{n=1}^{\infty }v_{n} $ абсолютно сходятся, то ряды $\sum \limits _{n=1}^{\infty }(u_{n} \pm v_{n}) $ также абсолютно сходятся.

Свойство 4 (теорема Римана)

Если ряд условно сходится, то какое бы мы не взяли число А, можно переставить члены данного ряда так, чтобы его сумма оказалась в точности равной А; более того, можно так переставить члены условно сходящегося ряда, чтобы после этого он расходился.

Пример 1

Исследовать на условную и абсолютную сходимость ряд

\[\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} .\]

Решение. Данный ряд является знакопеременным, общий член которого обозначим: $\frac{(-1)^{n} \cdot 9^{n} }{n!} =u_{n} $. Составим ряд из абсолютных величин $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ и применим к нему признак Даламбера. Составим предел $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } $, где $a_{n} =\frac{9^{n} }{n!} $, $a_{n+1} =\frac{9^{n+1} }{(n+1)!} $. Проведя преобразования, получаем $\mathop{\lim }\limits_{n\to \infty } \frac{a_{n+1} }{a_{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n+1} \cdot n!}{(n+1)!\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9^{n} \cdot 9\cdot n!}{n!\cdot (n+1)\cdot 9^{n} } =\mathop{\lim }\limits_{n\to \infty } \frac{9}{n+1} =0$. Таким образом, ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\frac{9^{n} }{n!} $ сходится, а значит, исходный знакопеременный ряд сходится абсолютно.Ответ: ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot 9^{n} }{n!} $ абсолютно сходится.

Пример 2

Исследовать на абсолютную и условную сходимость ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $.

  1. Исследуем ряд на абсолютную сходимость. Обозначим $\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} =u_{n} $ и составим ряд из абсолютных величин $a_{n} =\left|u_{n} \right|=\frac{\sqrt{n} }{n+1} $. Получаем ряд $\sum \limits _{n=1}^{\infty }\left|u_{n} \right| =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ с положительными членами, к которому применяем предельный признак сравнения рядов. Для сравнения с рядом $\sum \limits _{n=1}^{\infty }a_{n} =\sum \limits _{n=1}^{\infty }\, \frac{\sqrt{n} }{n+1} $ рассмотрим ряд, который имеет вид $\sum \limits _{n=1}^{\infty }\, b_{n} =\sum \limits _{n=1}^{\infty }\, \frac{1}{\sqrt{n} } \, $. Этот ряд является рядом Дирихле с показателем $p=\frac{1}{2}
  2. Далее исследуем исходный ряд $\sum \limits _{n=1}^{\infty }\frac{(-1)^{n} \cdot \sqrt{n} }{n+1} $ на условную сходимость. Для этого проверим выполнение условий признака Лейбница. Условие 1): $u_{n} =(-1)^{n} \cdot a_{n} $, где $a_{n} =\frac{\sqrt{n} }{n+1} >0$, т.е. этот ряд знакочередующийся. Для проверки условия 2) о монотонном убывании членов ряда используем следующий метод. Рассмотрим вспомогательную функцию $f(x)=\frac{\sqrt{x} }{x+1} $, определенную при $x\in }